Responder:
Explicación:
Suponiendo que el gas es ideal, esto se puede calcular de varias maneras diferentes. La Ley de gas combinado es más apropiada que la Ley de gas ideal, y más general (por lo tanto, estar familiarizado con ella lo beneficiará en problemas futuros con mayor frecuencia) que la Ley de Charles, así que la usaré.
Reorganizar para
Reorganizar para hacer obvias las variables proporcionales.
La presión es constante, así que sea lo que sea, se dividirá por sí misma.
Simplificar
Termina con las mismas unidades con las que comenzaste.
Esta respuesta tiene sentido intuitivo. Si la presión es constante, disminuir la temperatura debería disminuir el volumen, ya que las partículas menos energéticas ocuparán una menor cantidad de espacio.
Tenga en cuenta que
Funcionó aquí porque esta ecuación se basaba en cómo las mismas variables variaban entre sí, y comencé con el volumen en una unidad no estándar y terminé con el volumen en una unidad no estándar.
Un contenedor con un volumen de 12 L contiene un gas con una temperatura de 210 K. Si la temperatura del gas cambia a 420 K sin ningún cambio en la presión, ¿cuál debe ser el nuevo volumen del contenedor?
Simplemente aplique la ley de Charle para la presión constante y la masa de un gas ideal. Entonces, tenemos, V / T = k donde, k es una constante. Así que, al poner los valores iniciales de V y T obtenemos, k = 12/210 Ahora , si el nuevo volumen es V 'debido a la temperatura 420K Entonces, obtenemos, (V') / 420 = k = 12/210 Entonces, V '= (12/210) × 420 = 24L
Un contenedor con un volumen de 7 L contiene un gas con una temperatura de 420 ° C. Si la temperatura del gas cambia a 300 ° C sin ningún cambio en la presión, ¿cuál debe ser el nuevo volumen del recipiente?
El nuevo volumen es 5L. Empecemos identificando nuestras variables conocidas y desconocidas. El primer volumen que tenemos es "7.0 L", la primera temperatura es 420K y la segunda temperatura es 300K. Nuestra única incógnita es el segundo volumen. Podemos obtener la respuesta utilizando la Ley de Charles, que muestra que existe una relación directa entre el volumen y la temperatura siempre que la presión y el número de moles permanezcan sin cambios. La ecuación que utilizamos es V_1 / T_1 = V_2 / T_2 donde los números 1 y 2 representan la primera y la segunda condición. Tamb
Un contenedor tiene un volumen de 19 L y contiene 6 mol de gas. Si el contenedor está comprimido de modo que su nuevo volumen sea de 5 L, ¿cuántos moles de gas deben liberarse del contenedor para mantener una temperatura y presión constantes?
22.8 mol Usemos la ley de Avogadro: v_1 / n_1 = v_2 / n_2 El número 1 representa las condiciones iniciales y el número 2 representa las condiciones finales. • Identifique sus variables conocidas y desconocidas: color (rosa) ("Conocidos:" v_1 = 4 L v_2 = 3L n_1 = 36 mol color (verde) ("Desconocidos:" n_2 • Reorganice la ecuación para resolver el número final de moles : n_2 = (v_2xxn_1) / v_1 • Conecte sus valores dados para obtener el número final de moles: n_2 = (19cancelLxx6mol) / (5 cancel "L") = 22.8 mol