Supongamos que aquí aplicaremos externamente una fuerza de
Entonces, podemos escribir,
Dado,
Asi que,
Asi que,
O,
Una esfera sólida está rodando puramente en una superficie horizontal rugosa (coeficiente de fricción cinética = mu) con la velocidad del centro = u. Choca inelásticamente con una pared vertical lisa en un momento determinado. ¿El coeficiente de restitución es 1/2?
(3u) / (7mug) Bueno, mientras intentamos resolver esto, podemos decir que inicialmente se produjo un balanceo puro simplemente debido a u = omegar (donde, omega es la velocidad angular) Pero a medida que tuvo lugar la colisión, su lineal la velocidad disminuye, pero durante la colisión no hubo cambios en la inhalación omega, por lo tanto, si la nueva velocidad es v y la velocidad angular es omega ', entonces tenemos que encontrar cuántas veces, debido al torque externo aplicado por la fuerza de fricción, estará en balanceo puro. , es decir, v = omega'r Ahora, dado, el coeficiente de re
Un objeto con una masa de 8 kg está en una rampa en una inclinación de pi / 8. Si el objeto se empuja hacia arriba en la rampa con una fuerza de 7 N, ¿cuál es el coeficiente mínimo de fricción estática necesario para que el objeto permanezca en posición?
La fuerza total que actúa sobre el objeto hacia abajo a lo largo del plano es mg sin ((pi) / 8) = 8 * 9.8 * sin ((pi) / 8) = 30N Y la fuerza aplicada es 7N hacia arriba a lo largo del plano. Entonces, la fuerza neta sobre el objeto es 30-7 = 23N hacia abajo a lo largo del plano. Por lo tanto, la fuerza frictioanl estática que debe actuar para equilibrar esta cantidad de fuerza debe actuar hacia arriba a lo largo del plano. Ahora, aquí, la fuerza de fricción estática que puede actuar es mu mg cos ((pi) / 8) = 72.42mu N (donde, mu es el coeficiente de fuerza de fricción estática) Entonces,
Un objeto con una masa de 5 kg está en una rampa en una inclinación de pi / 12. Si el objeto está siendo empujado hacia arriba en la rampa con una fuerza de 2 N, ¿cuál es el coeficiente mínimo de fricción estática necesario para que el objeto permanezca en posición?
Consideremos la fuerza total sobre el objeto: 2N hacia arriba de la inclinación. mgsina (pi / 12) ~~ 12.68 N hacia abajo. Por lo tanto, la fuerza total es 10.68N hacia abajo. Ahora la fuerza de fricción se da como mumgcostheta, que en este caso se simplifica a ~ 47.33mu N así que mu = 10.68 / 47.33 ~~ 0.23 Nota, si no hubiera habido la fuerza adicional, mu = tantheta