Para esta pregunta, vamos a comenzar con la Ley del Gas Ideal.
Sabemos
Resolviendo esto para
Buscando el valor de R con nuestras unidades, nos da un valor de 62.36367.
Inserte nuestros números (Recuerde convertir Celsius a Kelvin y resuelva para obtener una respuesta de aproximadamente 657 g).
El volumen de un gas cerrado (a una presión constante) varía directamente como la temperatura absoluta. Si la presión de una muestra de 3,46 L de gas de neón a 302 ° K es 0.926 atm, ¿cuál sería el volumen a una temperatura de 338 ° K si la presión no cambia?
3.87L ¡Interesante problema de química práctica (y muy común) para un ejemplo algebraico! Éste no proporciona la ecuación real de la Ley del gas ideal, pero muestra cómo una parte de ella (la Ley de Charles) se deriva de los datos experimentales. Algebraicamente, se nos dice que la velocidad (pendiente de la línea) es constante con respecto a la temperatura absoluta (la variable independiente, generalmente el eje x) y el volumen (variable dependiente o eje y). La estipulación de una presión constante es necesaria para la corrección, ya que también está involu
A una temperatura de 280 K, el gas en un cilindro tiene un volumen de 20.0 litros. Si el volumen del gas se reduce a 10,0 litros, ¿cuál debe ser la temperatura para que el gas permanezca a una presión constante?
PV = nRT P es presión (Pa o Pascales) V es volumen (m ^ 3 o metros en cubos) n es Número de moles de gas (mol o moles) R es la constante de gas (8.31 JK ^ -1mol ^ -1 o Joules por Kelvin por mol) T es la temperatura (K o Kelvin) En este problema, está multiplicando V por 10.0 / 20.0 o 1/2. Sin embargo, mantienes todas las demás variables igual excepto T. Por lo tanto, necesitas multiplicar T por 2, lo que te da una temperatura de 560K.
Cuando un suministro de gas hidrógeno se mantiene en un contenedor de 4 litros a 320 K, ejerce una presión de 800 torr. El suministro se mueve a un recipiente de 2 litros y se enfría a 160 K. ¿Cuál es la nueva presión del gas confinado?
La respuesta es P_2 = 800 t o rr. La mejor manera de abordar este problema es usando la ley del gas ideal, PV = nRT. Dado que el hidrógeno se mueve de un contenedor a otro, suponemos que el número de moles permanece constante. Esto nos dará 2 ecuaciones P_1V_1 = nRT_1 y P_2V_2 = nRT_2. Como R también es una constante, podemos escribir nR = (P_1V_1) / T_1 = (P_2V_2) / T_2 -> la ley del gas combinada. Por lo tanto, tenemos P_2 = V_1 / V_2 * T_2 / T_1 * P_1 = (4L) / (2L) * (160K) / (320K) * 800t o rr = 800t o rr.